These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Model for tissue specific Calcitonin/CGRP-I RNA processing from in vitro experiments. Author: Bovenberg RA, Adema GJ, Jansz HS, Baas PD. Journal: Nucleic Acids Res; 1988 Aug 25; 16(16):7867-83. PubMed ID: 3262214. Abstract: The Calcitonin/CGRP-I (CALC-I) gene is known to be expressed in a tissue specific fashion resulting in the production of Calcitonin mRNA in thyroid C-cells and CGRP-I mRNA in particular nerve cells. The alternative RNA processing reactions include splicing of exons 1, 2 and 3 to exon 4 and poly (A) addition at exon 4 (Calcitonin mRNA) or splicing of exons 1, 2 and 3 to exons 5 and 6 and poly (A) addition at exon 6 (CGRP-I mRNA). Using a model precursor RNA containing the exon 3 to exon 5 region of the human CALC-I gene we have investigated the Calcitonin- and CGRP-I mRNA-specific processing reactions in vitro, in nuclear extracts of Hela, PC12 and Ewing-1B cells, respectively. Extracts of PC12- and Ewing-1B cells were expected to perform CGRP mRNA-specific splicing, whereas Calcitonin mRNA specific processing was expected to occur in Hela cell extracts. Surprisingly, CGRP mRNA-specific splicing of exon 3 to exon 5 was the predominant reaction in all three extracts. Significant Calcitonin mRNA-specific splicing of exon 3 to exon 4 only took place upon elimination of the dominant downstream 3' splice site used in CGRP mRNA-specific splicing. This elimination occurs most definitively by cleavage at the Calcitonin mRNA specific poly (A) site at exon 4 which may then be the major regulatory mechanism for tissue-specific expression of the CALC-I gene.[Abstract] [Full Text] [Related] [New Search]