These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chemical Defense of Yacón (Smallanthus sonchifolius) Leaves against Phytophagous Insects: Insect Antifeedants from Yacón Leaf Trichomes. Author: Tsunaki K, Morimoto M. Journal: Plants (Basel); 2020 Jul 06; 9(7):. PubMed ID: 32640580. Abstract: Yacón is a perennial crop with high insect resistance. Its leaves have many glandular trichomes, which may be related to pest resistance. In order to collect the constituents of glandular trichomes, leaves were rinsed using dichloromethane (DCM) to obtain the rinsate, and the plant residues were subsequently extracted by DCM to obtain a DCM extract containing the internal constituents of yacón leaves. Biologic evaluations revealed that insect antifeedant activity was stronger for the rinsate than for the DCM extract against the common cutworm. The major constituents of rinsate were isolated by silica gel flash chromatography and were identified as sesquiterpene lactones (SLs), uvedalin (1) and enhydrin (2) and uvedalin aldehyde (3), collectively known as melampolides. Although SLs 1 and 2 exhibited remarkably strong insect antifeedant activity, SL 3 and reduced corresponding derivatives (4 and 5) of 1 and 2 exhibited moderate insect antifeedant activity. Additionally, the two analogs, parthenolide (6) and erioflorin (7) showed moderate insect antifeedant activity. The results indicate that the substituent patterns of SLs may be related to the insect antifeedant activities. The insect antifeedant activities of SLs 1 and 2 were similar to that of the positive control azadirachtin A (8), and thus these natural products may function in chemical defense against herbivores.[Abstract] [Full Text] [Related] [New Search]