These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of cellular effect of phorbol esters on action of arginine vasopressin and angiotensin II on rat vascular smooth muscle cells in culture.
    Author: Caramelo C, Tsai P, Schrier RW.
    Journal: Biochem J; 1988 Sep 15; 254(3):625-9. PubMed ID: 3264151.
    Abstract:
    The inhibitory effect of phorbol-12-myristate-13-acetate (PMA) on the Ca2+-mobilization mechanisms by arginine vasopressin (AVP) and angiotensin II (AII) was analysed in rat vascular smooth muscle cells (VSMC) in culture. PMA inhibited the Ca2+-mobilizing effect of both AVP and AII in a dose-dependent manner, including the rise in cytosolic free Ca2+ ( [Ca2+]i) and Ca2+ efflux. In addition, inositol trisphosphate (IP3) production induced by AVP or AII was more than 50% reduced by PMA. The involvement of protein kinase C was implicated by the diminution of the PMA effect by the specific protein kinase C inhibitor isoquinoline-sulphonyl-O-2-methylpiperazine (H7) and the lack of effect of an inactive phorbol. Thus, these results suggest that there is a blocking site that is common or similar for both AVP and AII signal transduction, and that it is a substrate for protein kinase C. This blocking action of protein kinase C occurred at least in part by inhibition of IP3 production and, subsequently, a reduction in cytosolic Ca2+ release. In the presence of ionomycin, which produces an increase in [Ca2+]i that is not altered by PMA, 45Ca2+ efflux was increased instead of inhibited by PMA, thus suggesting that protein kinase C activation also stimulates a Ca2+-extrusion mechanism in VSMC.
    [Abstract] [Full Text] [Related] [New Search]