These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Three-dimensional electrodes enhance electricity generation and nitrogen removal of microbial fuel cells.
    Author: Dong J, Wu Y, Wang C, Lu H, Li Y.
    Journal: Bioprocess Biosyst Eng; 2020 Dec; 43(12):2165-2174. PubMed ID: 32642906.
    Abstract:
    One of the critical problems for practical application of microbial fuel cells (MFCs) is the poor electron transfer between microbial cells and anode. Hence, good biocompatibility and high specific surface area of electrodes are indispensable for MFC scale-up. In this study, three-dimensional electrode MFC (3DEMFC) was developed by filling biochar between anode and cathode. Three types of biochar electrodes (biochar, biochar and zeolite mixture, and MgO-modified biochar) were employed, and the performance of 3DEMFCs treating nitrogen in wastewater was investigated. The results showed that the highest power density of MFCs was 4.45 ± 0.21 W m-3 achieved by 3DEMFC filled with MgO-modified biochar, and the overall power generation of 3DEMFCs (2.40 ± 0.28 ~ 4.45 ± 0.21 W m-3) was higher than that of MFC without biochar (1.31 ± 0.24 W m-3). The linear sweep voltammetry (LSV) results also demonstrated biochar addition to MFC was conducive to electron transfer between microbes and anode and MgO-modified biochar presented the highest coulombs transfer ability. Moreover, the highest removal efficiencies of ammonium, total nitrogen, and COD (93.6 ± 3.2%, 84.8 ± 2%, and 91.6 ± 1.3%, respectively) were achieved by 3DEMFC containing MgO-modified biochar, and simultaneous short-cut nitrification and denitrification were observed in MFCs. Furthermore, the SEM images displayed the bacteria adhesion on biochar and the biofilm dry weights of MgO-modified biochar after experiment was the highest of 103 ± 4 mg g-1 among three kinds of biochar electrodes. Therefore, the power generation and nitrogen removal conspicuously enhanced in 3DEMFCs and biochar exhibited excellent biocompatibility and distinct electrochemical performance for MFC practical applications in wastewater treatment.
    [Abstract] [Full Text] [Related] [New Search]