These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sequence-based genetic mapping of Cynodon dactylon Pers. reveals new insights into genome evolution in Poaceae.
    Author: Fang T, Dong H, Yu S, Moss JQ, Fontanier CH, Martin DL, Fu J, Wu Y.
    Journal: Commun Biol; 2020 Jul 09; 3(1):358. PubMed ID: 32647329.
    Abstract:
    Bermudagrass (Cynodon dactylon Pers.) is an important warm-season perennial used extensively for turf, forage, soil conservation and remediation worldwide. However, limited genomic information has hindered the application of molecular tools towards understanding genome evolution and in breeding new cultivars. We genotype a first-generation selfed population derived from the tetraploid (4x = 36) 'A12359' using genotyping-by-sequencing. A high-density genetic map of 18 linkage groups (LGs) is constructed with 3,544 markers. Comparative genomic analyses reveal that each of nine homeologous LG pairs of C. dactylon corresponds to one of the first nine chromosomes of Oropetium thomaeum. Two nested paleo-ancestor chromosome fusions (ρ6-ρ9-ρ6, ρ2-ρ10-ρ2) may have resulted in a 12-to-10 chromosome reduction. A segmental dissemination of the paleo-chromosome ρ12 (ρ1-ρ12-ρ1, ρ6-ρ12-ρ6) leads to the 10-to-9 chromosome reduction in C. dactylon genome. The genetic map will assist in an ongoing whole genome sequence assembly and facilitate marker-assisted selection (MAS) in developing new cultivars.
    [Abstract] [Full Text] [Related] [New Search]