These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interleukin-7 and interleukin-15 drive CD4+CD28null T lymphocyte expansion and function in patients with acute coronary syndrome. Author: Bullenkamp J, Mengoni V, Kaur S, Chhetri I, Dimou P, Astroulakis ZMJ, Kaski JC, Dumitriu IE. Journal: Cardiovasc Res; 2021 Jul 07; 117(8):1935-1948. PubMed ID: 32647892. Abstract: AIMS: Inflammation has important roles in atherosclerosis. CD4+CD28null (CD28null) T cells are a specialized T lymphocyte subset that produce inflammatory cytokines and cytotoxic molecules. CD28null T cells expand preferentially in patients with acute coronary syndrome (ACS) rather than stable angina and are barely detectable in healthy subjects. Importantly, ACS patients with CD28null T-cell expansion have increased risk for recurrent acute coronary events and poor prognosis, compared to ACS patients in whom this cell subset does not expand. The mechanisms regulating CD28null T-cell expansion in ACS remain elusive. We therefore investigated the role of cytokines in CD28null T-cell expansion in ACS. METHODS AND RESULTS: High-purity sorted CD4+ T cells from ACS patients were treated with a panel of cytokines (TNF-α, IL-1β, IL-6, IL-7, and IL-15), and effects on the number, phenotype, and function of CD28null T cells were analysed and compared to the control counterpart CD28+ T-cell subset. IL-7- and IL-15-induced expansion of CD28null T cells from ACS patients, while inflammatory cytokines TNF-α, IL-1β, and IL-6 did not. The mechanisms underlying CD28null T-cell expansion by IL-7/IL-15 were preferential activation and proliferation of CD28null T cells compared to control CD28+ T cells. Additionally, IL-7/IL-15 markedly augmented CD28null T-cell cytotoxic function and interferon-γ production. Further mechanistic analyses revealed differences in baseline expression of component chains of IL-7/IL-15 receptors (CD127 and CD122) and increased baseline STAT5 phosphorylation in CD28null T cells from ACS patients compared to the control CD28+ T-cell subset. Notably, we demonstrate that CD28null T-cell expansion was significantly inhibited by Tofacitinib, a selective JAK1/JAK3 inhibitor that blocks IL-7/IL-15 signalling. CONCLUSION: Our novel data show that IL-7 and IL-15 drive the expansion and function of CD28null T cells from ACS patients suggesting that IL-7/IL-15 blockade may prevent expansion of these cells and improve patient outcomes.[Abstract] [Full Text] [Related] [New Search]