These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Erythropoietin-Induced Autophagy Protects Against Spinal Cord Injury and Improves Neurological Function via the Extracellular-Regulated Protein Kinase Signaling Pathway. Author: Zhong L, Zhang H, Ding ZF, Li J, Lv JW, Pan ZJ, Xu DX, Yin ZS. Journal: Mol Neurobiol; 2020 Oct; 57(10):3993-4006. PubMed ID: 32647973. Abstract: The objective of this study was to explore the neuroprotective molecular mechanisms of erythropoietin (EPO) in rats following spinal cord injury (SCI). First, a standard SCI model was established. After drug or saline treatment was administered, locomotor function was evaluated in rats using the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale. H&E, Nissl, and TUNEL staining were performed to assess the ratio of cavities, number of motor neurons, and apoptotic cells in the damaged area. The relative protein and mRNA expressions were examined using western blot and qRT-PCR analyses, and the inflammatory markers, axon special protein, and neuromuscular junctions (NMJs) were detected by immunofluorescence. Both doses of EPO notably improved locomotor function, but high-dose EPO was more effective than low-dose EPO. Moreover, EPO reduced the cavity ratio, cell apoptosis, and motor neuron loss in the damaged area, but enhanced the autophagy level and extracellular-regulated protein kinase (ERK) activity. Treatment with an ERK inhibitor significantly prevented the effect of EPO on SCI, and an activator mimicked the benefits of EPO. Further investigation revealed that EPO promoted SCI-induced autophagy via the ERK signaling pathway. EPO activates autophagy to promote locomotor function recovery in rats with SCI via the ERK signaling pathway.[Abstract] [Full Text] [Related] [New Search]