These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: FtsZ-Independent Mechanism of Division Inhibition by the Small Molecule PC190723 in Escherichia coli.
    Author: Khare S, Hsin J, Sorto NA, Nepomuceno GM, Shaw JT, Shi H, Huang KC.
    Journal: Adv Biosyst; 2019 Nov; 3(11):e1900021. PubMed ID: 32648693.
    Abstract:
    While cell division is a critical process in cellular proliferation, very few antibiotics have been identified that target the bacterial cell-division machinery. Recent studies have shown that the small molecule PC190723 inhibits cell division in several Gram-positive bacteria, with a hypothesized mechanism of action involving direct targeting of the tubulin homolog FtsZ, which is essential for division in virtually all bacterial species. Here, it is shown that PC190723 also inhibits cell division in the Gram-negative bacterium Escherichia coli if the outer membrane permeability barrier is compromised genetically or chemically. The results show that the equivalent FtsZ mutations conferring PC190723 resistance in Staphylococcus aureus do not protect E. coli against PC190723, and that suppressors of PC190723 sensitivity in E. coli, which do not generically decrease outer membrane permeability, do not map to FtsZ or other division proteins. These suppressors display a wide range of morphological and growth phenotypes, and one exhibits a death phenotype in the stationary phase similar to that of a mutant with disrupted lipid homeostasis. Finally, a complementing FtsZ-msfGFP fusion is used to show that PC190723 does not affect the Z-ring structure. Taken together, the findings suggest that PC190723 inhibits growth and division in E. coli without targeting FtsZ. This study highlights the importance of utilizing a combination of genetic, chemical, and single-cell approaches to dissect the mechanisms of action of new antibiotics, which are not necessarily conserved across bacterial species.
    [Abstract] [Full Text] [Related] [New Search]