These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MicroRNA-200a Inhibits Inflammation and Atherosclerotic Lesion Formation by Disrupting EZH2-Mediated Methylation of STAT3.
    Author: Wang J, Li P, Xu X, Zhang B, Zhang J.
    Journal: Front Immunol; 2020; 11():907. PubMed ID: 32655542.
    Abstract:
    Endothelial inflammation and dysfunction are critical to the process of atherosclerosis. Emerging evidence demonstrates that upregulation of miR-200a reduces VCAM-1 expression and prevents monocytic cell adhesion onto the aortic endothelium. However, limited information is available about the role of microRNA-200a (miR-200a) in facilitating atherosclerotic lesion formation. We investigated the anti-inflammatory and anti-atherosclerotic actions of miR-200a. Human umbilical vein endothelial cells (HUVECs) were cultured in the presence of oxidized low-density lipoprotein (ox-LDL), and their viability and apoptosis were evaluated using CCK-8 assays and flow cytometric analysis. The enhancer of zeste homolog 2 (EZH2) promoter activity was evaluated in the presence of miR-200a by dual luciferase reporter gene assay. EZH2-mediated methylation of signal transducer and activator of transcription 3 (STAT3) was validated by ChIP and IP assays. ApoE-/- mice were given a 12-week high-fat diet and developed as in vivo atherosclerotic models. miR-200a was downregulated but EZH2 and HMGB1 were upregulated in ox-LDL-treated HUVECs and the aorta tissues of atherosclerotic mouse models. Elevated miR-200a was shown to protect HUVECs against ox-LDL-induced apoptosis and inflammation. EZH2 was verified as a target of miR-200a. The protective effects of miR-200a were abrogated upon an elevation of EZH2. EZH2 methylated STAT3 and enhanced STAT3 activity by increased tyrosine phosphorylation of STAT3, thereby increasing apoptosis and release of pro-inflammatory cytokines in ox-LDL-treated HUVECs. An anti-atherosclerotic role of miR-200a was also demonstrated in atherosclerotic mouse models. Our study demonstrates that miR-200a has anti-inflammatory and anti-atherosclerotic activities dependent on the EZH2/STAT3 signaling cascade.
    [Abstract] [Full Text] [Related] [New Search]