These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Radiation-Induced Lung Injury via miRNA-214-3p. Author: Lei X, He N, Zhu L, Zhou M, Zhang K, Wang C, Huang H, Chen S, Li Y, Liu Q, Han Z, Guo Z, Han Z, Li Z. Journal: Antioxid Redox Signal; 2021 Oct 10; 35(11):849-862. PubMed ID: 32664737. Abstract: Aims: Radiotherapy is an effective treatment for thoracic malignancies, but it can cause pulmonary injury and may lead to respiratory failure in a subset of patients. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are now recognized as a new candidate for cell-free treatment of lung diseases. Here, we investigated whether MSC-derived EVs (MSC-EVs) could ameliorate radiation-induced lung injury. Results: We exposed mice to thoracic radiation with a total dose of 15 Gy and assessed the protective effects of MSC-EVs on endothelial cells damage, vascular permeability, inflammation, and fibrosis. We found that MSC-EVs attenuated radiation-induced lung vascular damage, inflammation, and fibrosis. Moreover, MSC-EVs reduced the levels of radiation-induced DNA damage by downregulating ATM/P53/P21 signaling. Our results confirmed that the downregulation of ataxia telangiectasia mutated (ATM) was regulated by miR-214-3p, which was enriched in MSC-EVs. Further analysis demonstrated that MSC-EVs inhibited the senescence-associated secretory phenotype development and attenuated the radiation-induced injury of endothelial cells. Innovation and Conclusion: Our study reveals that MSC-EVs can reduce pulmonary radiation injury through transferring miR-214-3p, providing new avenues to minimize lung injury from radiation therapy. Antioxid. Redox Signal. 35, 849-862.[Abstract] [Full Text] [Related] [New Search]