These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Aerosol-associated n-alkanes over Dhauladhar region of North-Western Himalaya: seasonal variations in sources and processes.
    Author: Kaushal D, Bamotra S, Yadav S, Tandon A.
    Journal: Environ Monit Assess; 2020 Jul 14; 192(8):517. PubMed ID: 32666386.
    Abstract:
    Particulate n-alkanes are major constituents of organic aerosols (OA). Being primary in origin, chemically stable and thus long-lived, n-alkanes retains source signatures and along with diagnostic parameters have extensively been used to identify source(s) of OA. Systematic, yearlong study was carried out in the Dhauladhar region of North-Western Himalaya (NWH) to investigate dynamics in the composition and concentration of aerosol-associated n-alkanes. PM10 samples were collected for 24 h, once every week, at an urban mid-altitude location (Dharamshala) and a rural low-altitude site (Pohara). Particulate bound n-alkanes were identified and quantified using thermal desorption gas chromatography mass spectrometry (TD-GCMS). Annual mean concentrations of total n-alkanes (TNA) were 211 ± 99 ng m-3 and 223 ± 83 ng m-3, while mass fractions of TNA in PM10 were 4410 ± 1759 ppm and 3622 ± 1243 ppm at Dharamshala and Pohara, respectively. At both sites, a slight dominance of odd carbon-numbered n-alkanes was noticed. The TNA concentration and associated diagnostic parameters indicated unique source profiles at rural and urban locations. Significant seasonal variations were attributed to the contrasting land-use settings and meteorological variations. Influence of petrogenic contributions at urban location and predominance of biogenic contributions at rural location were observed in spring and autumn seasons. Preliminary insights on sources of organic aerosols are presented here. The diagnostic parameters allowed apportionment of biogenic and petrogenic sources. Biogenic emissions from agricultural practices viz. harvesting and threshing were predominant in the rural settings, while tourism-led anthropogenic contributions significantly add to petrogenic contributions in urban environment of the NWH region.
    [Abstract] [Full Text] [Related] [New Search]