These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prospective Long-term Follow-up of Autologous Chondrocyte Implantation With Periosteum Versus Matrix-Associated Autologous Chondrocyte Implantation: A Randomized Clinical Trial.
    Author: Barié A, Kruck P, Sorbi R, Rehnitz C, Oberle D, Walker T, Zeifang F, Moradi B.
    Journal: Am J Sports Med; 2020 Jul; 48(9):2230-2241. PubMed ID: 32667270.
    Abstract:
    BACKGROUND: Matrix-associated autologous chondrocyte implantation (MACI) is a further development of the original autologous chondrocyte implantation periosteal flap technique (ACI-P) for the treatment of articular cartilage defects. PURPOSE: We aimed to establish whether MACI or ACI-P provides superior long-term outcomes in terms of patient satisfaction, clinical assessment, and magnetic resonance imaging (MRI) evaluation. STUDY DESIGN: Randomized controlled trial; Level of evidence, 2. METHODS: A total of 21 patients with cartilage defects at the femoral condyle were randomized to MACI (n = 11) or ACI-P (n = 10) between the years 2004 and 2006. Patients were assessed for subjective International Knee Documentation Committee (IKDC) score, Lysholm and Gillquist score, Tegner Activity Score, and 36-Item Short Form Health Survey (SF-36) preoperatively (T0), at 1 and 2 years postoperatively (T1, T2), and at the final follow-up 8 to 11 years after surgery (T3). Onset of osteoarthritis was determined using the Kellgren-Lawrence score and Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score, and delayed gadolinium-enhanced MRI of cartilage was used to evaluate the cartilage. Adverse events were recorded to assess safety. RESULTS: There were 16 patients (MACI, n = 9; ACI-P, n = 7) who were reassessed on average 9.6 years after surgery (76% follow-up rate). The Lysholm and Gillquist score improved in both groups after surgery and remained elevated but reached statistical significance only in ACI-P at T1 and T2. IKDC scores increased significantly at all postoperative evaluation time points in ACI-P. In MACI, IKDC scores showed a significant increase at T1 and T3 when compared with T0. In the majority of the patients (10/16; MACI, 5/9; ACI-P, 5/7) a complete defect filling was present at the final follow-up as shown by the MOCART score, and 1 patient in the ACI-P group displayed hypertrophy of the repair tissue, which represents 6% of the whole study group and 14.3% of the ACI-P group. Besides higher SF-36 vitality scores in ACI-P at T3, no significant differences were seen in clinical scores and MRI scores between the 2 methods at any time point. Revision rate was 33.3% in MACI and 28.6% in ACI-P at the last follow-up. CONCLUSION: Our long-term results suggest that first- and third-generation ACI methods are equally effective treatments for isolated full-thickness cartilage defects of the knee. With the number of participants available, no significant difference was noted between MACI and ACI-P at any time point. Interpretation of our data has to be performed with caution due to the small sample size, which was further limited by a loss to follow-up of 24%.
    [Abstract] [Full Text] [Related] [New Search]