These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetic variation between long-lived versus short-lived bats illuminates the molecular signatures of longevity.
    Author: Huang Z, Whelan CV, Dechmann D, Teeling EC.
    Journal: Aging (Albany NY); 2020 Sep 05; 12(16):15962-15977. PubMed ID: 32674072.
    Abstract:
    Bats are the longest-lived mammals given their body size with majority of species exhibiting exceptional longevity. However, there are some short-lived species that do not exhibit extended lifespans. Here we conducted a comparative genomic and transcriptomic study on long-lived Myotis myotis (maximum lifespan = 37.1 years) and short-lived Molossus molossus (maximum lifespan = 5.6 years) to ascertain the genetic difference underlying their divergent longevities. Genome-wide selection tests on 12,467 single-copy genes between M. myotis and M. molossus revealed only three genes (CCDC175, FATE1 and MLKL) that exhibited significant positive selection. Although 97.96% of 12,467 genes underwent purifying selection, we observed a significant heterogeneity in their expression patterns. Using a linear mixed model, we obtained expression of 2,086 genes that may truly represent the genetic difference between M. myotis and M. molossus. Expression analysis indicated that long-lived M. myotis exhibited a transcriptomic profile of enhanced DNA repair and autophagy pathways, compared to M. molossus. Further investigation of the longevity-associated genes suggested that long-lived M. myotis have naturally evolved a diminished anti-longevity transcriptomic profile. Together with observations from other long-lived species, our results suggest that heightened DNA repair and autophagy activity may represent a universal mechanism to achieve longevity in long-lived mammals.
    [Abstract] [Full Text] [Related] [New Search]