These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxymatrine alleviated hepatic lipid metabolism via regulating miR-182 in non-alcoholic fatty liver disease.
    Author: Zhang H, Yang L, Wang Y, Huang W, Li Y, Chen S, Song G, Ren L.
    Journal: Life Sci; 2020 Sep 15; 257():118090. PubMed ID: 32679144.
    Abstract:
    AIMS: This study aimed to investigate oxymatrine via regulating miR-182 improved the hepatic lipid accumulation in non-alcoholic fatty liver disease (NAFLD) model. MATERIALS AND METHODS: Wistar rats were fed high-fat and high-fructose diet (HFDHFr group) for 4 weeks and HepG2 cells were treated with palmitic acid (PA group), and then were given oxymatrine intervention. The expression profiles of miRNAs were accessed by RNA sequencing (RNA-Seq). Hematoxylin-eosin (HE) staining and Oil Red O staining were used to observe the inflammation and lipid accumulation in liver. The levels of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty-acid synthase (FAS) and carnitine palmitoyltransferase 1A (CPT-1A) were detected by RT-qPCR and Western blotting, respectively. Cell viability was detected by Cell Counting Kit-8 (CCK-8). KEY FINDINGS: miR-182 was down-regulated in the HFDHFr group and PA group. Oxymatrine reduced body weight, and improved glucose tolerance and insulin resistance in the HFDHFr + OMT group compared with HFDHFr group. In addition, oxymatrine reduced the ratio (liver weight/body weight), the content of triglycerides (TG), hepatic lipid accumulation and steatosis. The levels of SREBP-1c, ACC, and FAS were significantly decreased, while the CPT-1A level was obviously elevated after oxymatrine intervention (P < 0.05). In vivo, miR-182 knockdown increased the levels of SREBP-1c, ACC and FAS, while reduced the CPT-1A level. Additionally, oxymatrine attenuated the effects of miR-182 inhibitor on lipid accumulation. SIGNIFICANCE: We presented a possible mechanism that oxymatrine alleviated hepatic lipid metabolism via regulating miR-182 in NAFLD model.
    [Abstract] [Full Text] [Related] [New Search]