These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative study between zinc oxide nanoparticles synthesis by biogenic and wet chemical methods in vivo and in vitro against Staphylococcus aureus.
    Author: Hamouda RA, Yousuf WE, Mohammed ABA, Mohammed RS, Darwish DB, Abdeen EE.
    Journal: Microb Pathog; 2020 Oct; 147():104384. PubMed ID: 32679246.
    Abstract:
    ZnO nanoparticles (ZnO-NPs) can be used as nano medicine for Staphylococcus aureus infection, which causes deleterious effects on liver, kidney and lung tissue, as it causes catarrhal bronchitis, peri-bronchial oedema, lymphocytic granulomas, oedematous fluid and haemorrhage inside the bronchi, and interstitial pneumonia. In this research ZnO nanoparticle (ZnO-NPs) synthesis by biogenic method using green alga Ulva fasciata and by wet chemical method. Both of them tested in vitro and in vivo against Staphylococcus aureus. The characterization of ZnO-NPs was detected by U.V spectroscopy, Fourier-transform infrared (FTIR), Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). In vivo assessment eight groups, each group contain of five rats and the treatment as follow (1) an uninfected control group; (2) an infected group; groups (3), (4), and (5) were injected with biogenic or chemical ZnO-NPs or zinc acetate, as the bulk group, respectively; and groups (6), (7) and (8) were infected and then treated in the same manner as groups (3), (4), and (5), respectively. The blood profile, biochemical parameters, phagocytic activity and histological assessment of liver, kidney and lung tissue of each rat was investigated after 20 days. The rats treated with 5 mg/1 kg natural ZnO-NPs showed improved lung characteristics, and the number of platelets in the infected groups treated with ZnO-NPs from chemical and natural sources (G6 and G7) was close to those in the control group. However, the trend was reversed for regarding lymphocytes, which remained at higher levels in uninfected animals treated with synthetic ZnO-NPs (G4) than in infected rats treated with synthetic ZnO-NPs (G7). Moreover, a significant difference in phagocytic activity was found among all groups compared to that of controls. Compared to control group rats (G1), uninfected rats injected with only natural ZnO-NPs (G3) showed a significant (P < 0.05) improvement in the phagocytic index. We propose that ZnO-NPs produced from natural sources are preferable to those produced from chemical sources for use as nano medicine for the treatment of S. aureus infection in albino rats.
    [Abstract] [Full Text] [Related] [New Search]