These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nanoparticle-Based Estrogen Delivery to Spinal Cord Injury Site Reduces Local Parenchymal Destruction and Improves Functional Recovery.
    Author: Cox A, Capone M, Matzelle D, Vertegel A, Bredikhin M, Varma A, Haque A, Shields DC, Banik NL.
    Journal: J Neurotrauma; 2021 Feb; 38(3):342-352. PubMed ID: 32680442.
    Abstract:
    Spinal cord injury (SCI) patients sustain significant functional impairments; this is causally related to restricted neuronal regeneration after injury. The ensuing reactive gliosis, inflammatory cascade, and glial scar formation impede axonal regrowth. Although systemic anti-inflammatory agents (steroids) have been previously administered to counteract this, no current therapeutic is approved for post-injury neuronal regeneration, in part because of related side effects. Likewise, therapeutic systemic estrogen levels exhibit neuroprotective properties, but dose-dependent side effects are prohibitive. The current study thus uses low-dose estrogen delivery to the spinal cord injury (SCI) site using an agarose gel patch embedded with estrogen-loaded nanoparticles. Compared to controls, spinal cords from rodents treated with nanoparticle site-directed estrogen demonstrated significantly decreased post-injury lesion size, reactive gliosis, and glial scar formation. However, axonal regeneration, vascular endothelial growth factor production, and glial-cell-derived neurotrophic factor levels were increased with estrogen administration. Concomitantly improved locomotor and bladder functional recovery were observed with estrogen administration after injury. Therefore, low-dose site-directed estrogen may provide a future approach for enhanced neuronal repair and functional recovery in SCI patients.
    [Abstract] [Full Text] [Related] [New Search]