These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional characterization of wheat myo-inositol oxygenase promoter under different abiotic stress conditions in Arabidopsis thaliana. Author: Alok A, Kaur J, Tiwari S. Journal: Biotechnol Lett; 2020 Oct; 42(10):2035-2047. PubMed ID: 32681381. Abstract: The production of wheat is severely affected by abiotic stresses such as cold, drought, salinity, and high temperature. Although constitutive promoters are frequently used to regulate the expression of alien genes, these may lead to undesirable side-effects in transgenic plants. Therefore, identification and characterization of an inducible promoter that can express transgene only when exposed to stresses are of great importance in the genetic engineering of crop plants. Previous studies have indicated the abiotic stress-responsive behavior of myo-inositol oxygenase (MIOX) gene in different plants. Here, we isolated the MIOX gene promoter from wheat (TaMIOX). The in-silico analysis revealed the presence of various abiotic stress-responsive cis-elements in the promoter region. The TaMIOX promoter was fused with the UidA reporter gene and transformed into Arabidopsis thaliana. The T3 single-copy homozygous lines were analyzed for GUS activity using histochemical and fluorometric assays. Transcript expression of TaMIOX::UidA was significantly up-regulated by heat (five fold), cold (seven fold), and drought (five fold) stresses as compared to transgenic plants grown without stress-induced conditions. The CaMV35S::UidA plants showed very high GUS activity even in normal conditions. In contrast, the TaMIOX::UidA plants showed prominent GUS activity only in stress treatments (cold, heat, and drought), which suggests the inducible behavior of the TaMIOX promoter. The substrate myo-inositol feeding assay of TaMIOX::UidA plants showed lesser GUS activity as compared to plants treated in abiotic stress conditions. Results support that the TaMIOX promoter could be used as a potential candidate for conditional expression of the transgene in abiotic stress conditions.[Abstract] [Full Text] [Related] [New Search]