These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Full-count PET recovery from low-count image using a dilated convolutional neural network. Author: Spuhler K, Serrano-Sosa M, Cattell R, DeLorenzo C, Huang C. Journal: Med Phys; 2020 Oct; 47(10):4928-4938. PubMed ID: 32687608. Abstract: PURPOSE: Positron emission tomography (PET) is an essential technique in many clinical applications that allows for quantitative imaging at the molecular level. This study aims to develop a denoising method using a novel dilated convolutional neural network (CNN) to recover full-count images from low-count images. METHODS: We adopted similar hierarchical structures as the conventional U-Net and incorporated dilated kernels in each convolution to allow the network to observe larger, more robust features within the image without the requirement of downsampling and upsampling internal representations. Our dNet was trained alongside a U-Net for comparison. Both models were evaluated using a leave-one-out cross-validation procedure on a dataset of 35 subjects (~3500 slabs), which were obtained from an ongoing 18 F-Fluorodeoxyglucose (FDG) study. Low-count PET data (10% count) were generated by randomly selecting one-tenth of all events in the associated listmode file. Analysis was done on the static image from the last 10 minutes of emission data. Both low-count PET and full-count PET were reconstructed using ordered subset expectation maximization (OSEM). Objective image quality metrics, including mean absolute percent error (MAPE), peak signal-to-noise ratio (PSNR), and structural similarity index metric (SSIM), were used to analyze the deep learning methods. Both deep learning methods were further compared to a traditional Gaussian filtering method. Further, region of interest (ROI) quantitative analysis was also used to compare U-Net and dNet architectures. RESULTS: Both the U-Net and our proposed network were successfully trained to synthesize full-count PET images from the generated low-count PET images. Compared to low-count PET and Gaussian filtering, both deep learning methods improved MAPE, PSNR, and SSIM. Our dNet also systematically outperformed U-Net on all three metrics (MAPE: 4.99 ± 0.68 vs 5.31 ± 0.76, P < 0.01; PSNR: 31.55 ± 1.31 dB vs 31.05 ± 1.39, P < 0.01; SSIM: 0.9513 ± 0.0154 vs 0.9447 ± 0.0178, P < 0.01). ROI quantification showed greater quantitative improvements using dNet over U-Net. CONCLUSION: This study proposed a novel approach of using dilated convolutions for recovering full-count PET images from low-count PET images.[Abstract] [Full Text] [Related] [New Search]