These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ecdysis triggering hormone modulates molt behaviour in the redclaw crayfish Cherax quadricarinatus, providing a mechanistic evidence for conserved function in molt regulation across Pancrustacea.
    Author: Minh Nhut T, Mykles DL, Elizur A, Ventura T.
    Journal: Gen Comp Endocrinol; 2020 Nov 01; 298():113556. PubMed ID: 32687930.
    Abstract:
    Molting enables growth and development across ecdysozoa. The molting process is strictly controlled by hormones - ecdysteroids. Ecdysteroidogenesis occurs in theprothoracic glands and stimulated by prothoracicotropic hormone in insects, while it ensues in the Y-organ and regulated by the molt inhibiting hormone in crustaceans. A peak in ecdysteroids in the hemolymph induces a cascade of multiple neuropeptides including Ecdysis Triggering Hormone (ETH) and Corazonin. The role of ETH is well defined in controlling the molt process in insects, but it is yet to be defined in crustaceans. In this study, we investigated the behavioral response of intermolt crayfish to ETH and Corazonin injections as well as the impact of ETH on the molt period using in vivo assays. Injection of Corazonin and ETH resulted in a clear and immediate eye twitching response to these two neuropeptides. The Corazonin injection induced eye twitching in slow and asynchronous manner, while ETH injection caused eye twitching in a relatively fast and synchronous way. A single injection of ETH to crayfish resulted in a remarkable prolong molt period, at twice the normal molting cycle, suggesting that ETH plays a key role in controlling the molt cycle in decapod crustaceans. Given the key significance of ETH in molt regulation and its plausible application in pest control, we characterized ETH across the pancrustacean orders. Bioinformatic analysis shows the mature ETH sequence is identical in all studied decapod species. ETH can be classified into specific groups based on the associated motif in each insect order and shows an insect motif -KxxPRx to be conserved in crustaceans.
    [Abstract] [Full Text] [Related] [New Search]