These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cytokinin metabolism in Narcissus bulbs: chilling promotes acetylation of zeatin riboside.
    Author: Letham DS, Smith NG, Willcocks DA.
    Journal: Funct Plant Biol; 2003 Jul; 30(5):525-532. PubMed ID: 32689037.
    Abstract:
    The levels of the cytokinins zeatin, dihydrozeatin and N6-(isopent-2-enyl)adenine and the corresponding 9-ribosides were determined in whole Narcissus pseudonarcissus L. bulbs after onset of summer dormancy, and after storage of the dormant bulbs at 4 or 15°C under moist conditions. The cytokinin level was increased at both temperatures; the dominant cytokinin at 15°C was zeatin riboside but at 4°C the free base, zeatin, was the principal cytokinin. The metabolism of 3H-labelled zeatin, zeatin riboside and 6-benzylaminopurine was studied in scales and base plates excised from bulbs previously held at 4 or 15°C. The chilling treatment promoted conversion of [3H]zeatin riboside to O-acetylzeatin riboside (an unusual cytokinin metabolite) in the excised base plate and inhibited 9-riboside formation from 6-benzylaminopurine. Chilling also promoted formation of O-acetylzeatin riboside from [3H]zeatin in excised scale tissue. Endogenous O-acetylzeatin and O-acetylzeatin riboside were concentrated in the base plate. Relative to zeatin riboside, O-acetylzeatin riboside was degraded to adenosine and related compounds less rapidly in the leaf cluster. Since acetylation of the zeatin side chain enhances activity in cytokinin bioassays, O-acetylzeatin riboside may play a role in leaf development following chilling of Narcissus bulbs.
    [Abstract] [Full Text] [Related] [New Search]