These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Plant phosphorus status has a limited influence on the concentration of phosphorus-mobilising carboxylates in the rhizosphere of chickpea. Author: Wouterlood M, Lambers H, Veneklaas EJ. Journal: Funct Plant Biol; 2005 Apr; 32(2):153-159. PubMed ID: 32689119. Abstract: Two experiments were conducted to investigate whether carboxylate exudation by chickpea (Cicer arietinum L.) is a response to phosphorus (P) deficiency or a constitutive trait. The effect of P supply on carboxylate concentrations in the plant and in the rhizosphere of chickpea cultivar Heera was studied in a sand culture. Plants were grown in pots supplied with 200 mL of solution containing 0-500 μm P every 3 d. Malonate was the main carboxylate exuded, and the main carboxylate in roots; shoots contained mainly citrate and malate. Contrary to what has been reported for other species, carboxylate concentrations in the rhizosphere decreased only slightly at high P supply, but they were still substantial. The effect of P supply on the rate of exudation was studied in a split-root sand culture. Root systems were split into two pots, one root half received no P and the other half received 200 mL of solution containing 0-500 μm P. The rhizosphere of both root halves contained similar concentrations of carboxylates, even when the plants received a different supply of P. Our results indicate that carboxylate exudation is determined by internal P rather than external factors. The fact that chickpea roots always exude carboxylates indicates that exudation in this species is largely constitutive.[Abstract] [Full Text] [Related] [New Search]