These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism.
    Author: Balibrea ME, Martínez-Andújar C, Cuartero J, Bolarín MC, Pérez-Alfocea F.
    Journal: Funct Plant Biol; 2006 Mar; 33(3):279-288. PubMed ID: 32689235.
    Abstract:
    Soluble sugar content has been studied in relation to sucrose metabolism in the hexose-accumulating cultivated tomato Lycopersicon esculentum Mill, the wild relative species Lycopersicon cheesmanii Riley, in the sucrose-accumulating wild relative species Lycopersicon chmielewskii Rick, Kesicky, Fobes & Holle. and in two hexose-accumulating interspecific F1 hybrids (L. esculentum × L. cheesmanii; L. esculentum × L. chmielewskii), cultivated under two irrigation regimes (control: EC = 2.1 and saline: EC = 8.4 dS m-1). Under control conditions the total soluble sugar content (as hexose equivalents) in the ripe fruits of L. cheesmanii was 3-fold higher than in L. esculentum, while L. chmielewskii and both F1 hybrids contained twice as much as the cultivar. With the exception of L. esculentum × L. cheesmanii, salinity increased the sugar content by 1.3 (wild species) and 1.7 times (cultivar and L. esculentum × L. chmielewskii) with respect to control fruits. Wild germplasm or salinity provided two different mechanisms for the increases in fruit sugar content. The hexoses accumulated in ripe fruits were strongly influenced by those accumulated at the start of ripening, but the hydrolysed starch before start of ripening only partially explained the final hexose levels and especially the increase under salinity. The early cell wall acid invertase and the late neutral invertase activities appeared to be related to the amount of hexoses accumulated in ripe fruits. However, no metabolic parameter was positively related to the amount of sugar accumulated (including sucrose). The major differences between genotypes appeared in ripe fruits, in which up to 50% of the total amount of sugars accumulated in the wild species (mainly in L. cheesmanii) and hybrids cannot be explained by the sugars accumulated and the starch hydrolysed before the start of ripening stage. As a consequence, the higher fruit quality of the wild species compared with L. esculentum may depend more on the continuation of sucrose import during ripening than on osmotic or metabolic particularities such as the hexose / sucrose-accumulator character or specific enzyme activities.
    [Abstract] [Full Text] [Related] [New Search]