These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Genome editing in plants directed by CRISPR/Cas ribonucleoprotein complexes].
    Author: Li X, Shi W, Geng LZ, Xu JP.
    Journal: Yi Chuan; 2020 Jun 20; 42(6):556-564. PubMed ID: 32694114.
    Abstract:
    The CRISPR/Cas system is the most popular genome editing technology in recent years and has been widely used in crop improvement. Compared with introducing the CRISPR/Cas system into plant cells with DNA constructs, introducing CRISPR/Cas ribonucleoprotein (RNP) to perform genome editing excels in rapid action, low off-target rates and is free of DNA insertions in editing plants. However, efficient delivery of CRISPR/Cas RNP into plant cells and achieving high editing frequency are still very challenging, which limits the extensive implementation of CRISPR/Cas RNP-mediated genome editing in plants. In this review, we summarize the progress of protein and RNP delivery methods in plant cells, and provide new perspectives of further development and future applications of the CRISPR/Cas RNP technology in plant genome editing. CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins)系统作为一种重要的基因编辑工具,自诞生以来被广泛应用于作物的性状改良。与CRISPR/Cas DNA载体介导的植物基因组编辑相比,CRISPR/Cas核糖核蛋白(CRISPR/Cas ribonucleoprotein, CRISPR/Cas RNP)介导的植物基因组编辑具有作用迅速、脱靶率低和无外源DNA插入(DNA-free)等优点,因而无需清除CRISPR编辑工具而更容易获得纯合的编辑体。但是,由于植物细胞转化方法和细胞再生技术的限制,不借助筛选标记的辅助将CRISPR/Cas RNP直接导入植物细胞并获得高效基因编辑仍比较困难,直接限制了CRISPR/Cas RNP在植物基因组编辑中的广泛应用。本文系统介绍了CRISPR/Cas RNP 基因组编辑技术的分子作用机理及其优势,并总结了CRISPR/Cas RNP导入植物细胞的方法,最后对CRISPR/Cas RNP在植物基因组编辑中的新应用和新思路进行了展望,以期为进一步改进CRISPR/Cas RNP基因组编辑技术和扩大其在作物改良中的应用提供参考。.
    [Abstract] [Full Text] [Related] [New Search]