These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exogenous 2-(3,4-Dichlorophenoxy) triethylamine alleviates salinity stress in maize by enhancing photosynthetic capacity, improving water status and maintaining K+/Na+ homeostasis. Author: Li L, Gu W, Zhang L, Li C, Chen X, Qian C, Wang Z, Li W, Zuo S, Wei S. Journal: BMC Plant Biol; 2020 Jul 23; 20(1):348. PubMed ID: 32703161. Abstract: BACKGROUND: Soil salinity restricts plant growth and productivity. 2-(3,4-dichlorophenoxy) triethylamine (DCPTA) can alleviate salinity stress in plants. However, the mechanism of DCPTA-mediated salinity tolerance has not been fully clarified. We aimed to investigate its role in enhancing photosynthetic capacity, improving water status, maintaining K+/Na+ homeostasis and alleviating salinity stress in maize (Zea mays L.). RESULTS: In present study, maize seedlings were grown in nutrient solutions with a combination of NaCl (0, 150 mM) and DCPTA (0, 20, 100, and 400 μM). And photosynthesis, water status, ion homeostasis and the expression of genes involved in ion uptake and transport were evaluated in the maize seedlings. The results demonstrated that DCPTA alleviated the growth inhibition of maize seedlings exposed to salinity stress by increasing the net photosynthetic rate (Pn) and the quantum efficiency of photosystem II (PSII) photochemistry. DCPTA improved the root hydraulic conductivity, which help maintained the water status. A relatively high K+ concentration but a relatively low Na+ concentration and the Na+/K+ ratio were observed in the presence of DCPTA under salinity stress. Additionally, DCPTA altered the expression of four genes (ZmSOS1, ZmHKT1, ZmNHX1 and ZmSKOR) that encode membrane transport proteins responsible for K+/Na+ homeostasis. CONCLUSIONS: DCPTA improved the salinity tolerance of maize may be associated with enhanced photosynthetic capacity, maintenance of water status and altered expression of genes involved in ion uptake and transport.[Abstract] [Full Text] [Related] [New Search]