These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Use of a magnetic covalent organic framework material with a large specific surface area as an effective adsorbent for the extraction and determination of six fluoroquinolone antibiotics by HPLC in milk sample.
    Author: Guan S, Wu H, Yang L, Wang Z, Wu J.
    Journal: J Sep Sci; 2020 Oct; 43(19):3775-3784. PubMed ID: 32706488.
    Abstract:
    A magnetic covalent organic framework material was synthesized with a core-shell structure using a simple solvothermal method. It was prepared with Fe3 O4 as the magnetic core, covalent organic framework as the shell, which synthesized from 1,3,5-triformylphloroglucinol and p-phenylenediamine by Schiff base reaction. Transmission electron microscopy, Fourier transform infrared spectroscopy, powder X-ray diffraction, vibrating sample magnetometry, and nitrogen adsorption-desorption were used to characterize magnetic adsorbent. It has showed a large specific surface area (505.6 m2 /g), which can provide many adsorption sites. Moreover, the saturation magnetization value was 48.4 emu/g enough to be separated by external magnet. Six kinds of fluoroquinolones (enoxacin, fleroxacin, ofloxacin, norfloxacin, pefloxacin, and lomefloxacin) were extracted by magnetic solid phase extraction with the magnetic adsorbent. High-performance liquid chromatography detects the entire adsorption and desorption process to further evaluate the optimal extraction and desorption conditions. Under the optimal chromatographic conditions, this method showed a low detection limit (0.05 to 0.20 μg/L), good linearity in the range of 0.5 to 200 μg/L, and the enrichment factor reaches 115.5-127.3. The spiked recovery of the fluoroquinolones in milk sample ranged from 90.4 to 101.2%.
    [Abstract] [Full Text] [Related] [New Search]