These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional role of phosphatidylcholine-specific phospholipase C in regulating leukotriene synthesis and degranulation in human eosinophils. Author: Sano A, Sano H, Iwanaga T, Tohda Y. Journal: Eur J Pharmacol; 2020 Oct 05; 884():173353. PubMed ID: 32707189. Abstract: Phosphatidylinositol-specific phospholipase C (PI-PLC) and cytosolic phospholipase A2 (cPLA2) regulate both eosinophil degranulation and leukotriene (LT) synthesis via PI-PLC-mediated calcium influx and cPLA2 activation. Phosphatidylcholine-specific phospholipase C (PC-PLC) likely plays a key role in cellular signaling, including the eosinophilic allergic inflammatory response. This study examined the role of PC-PLC in eosinophil LT synthesis and degranulation using tricyclodecan-9-yl-xanthogenate (D609), a PC-specific PLC inhibitor. D609 inhibited N-formyl-met-leu-phe + cytochalasin B (fMLP/B)-induced arachidonic acid (AA) release and leukotriene C4 (LTC4) secretion. However, at concentrations that blocked both AA release and LTC4 secretion, D609 had no significant inhibitory effect on stimulated cPLA2 activity. D609 also partially blocked fMLP/B-induced calcium influx, indicating that inhibition of AA release and LTC4 secretion by D609 is due to inhibition of calcium-mediated cPLA2 translocation to intracellular membranes, not inhibition of cPLA2 activity. In addition, D609 inhibited fMLP/B-stimulated eosinophil peroxidase release, indicating that PC-PLC regulates fMLP/B-induced eosinophil degranulation by increasing the intracellular calcium concentration ([Ca2+]i). Overall, our results showed that PC-PLC is critical for fMLP/B-stimulated eosinophil LT synthesis and degranulation. In addition, degranulation requires calcium influx, while PC-PLC regulates LTC4 synthesis through calcium-mediated cPLA2 activation.[Abstract] [Full Text] [Related] [New Search]