These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of novel antigenic vaccine candidates for nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae infection.
    Author: Ma Y, Hao L, Liang Z, Ma J, Ke H, Kang H, Yang H, Wu J, Feng G, Liu Z.
    Journal: Fish Shellfish Immunol; 2020 Oct; 105():405-414. PubMed ID: 32712231.
    Abstract:
    Streptococcus agalactiae is one of the important pathogens responsible for high mortality and economic losses of the tilapia industry worldwide. Based on ten serovars of S. agalactiae infection, subunit vaccine with conserved antigens is promising strategy corresponding stimulated long-term immunity and provides protection for animals against different serotypes of S. agalactiae. In the present study, eight proteins (AP, AL, LivK, ESAT6, essA, essB, essC and esaA) were selected from the S. agalactiae serotype Ia genome as immunogenic antigens with bioinformation and immune experiment assays. These recombinant proteins were successfully obtained through expression in Escherichia coli and the immunogenicity was assessed in tilapia challenge model. The results showed that the recombinant proteins caused high-level-specific antibodies production and high lysozyme activities, suggesting that the recombinant proteins induced specific humoral immune response and innate immune response of tilapia. The signficant increase were observed in the cytokines levels of TNF-α, IL-1β, IFN-γ, cc1, cc2 and immune-related genes levels of CD8α and MHC factors in the spleen and head kidney tissues, suggesting that the recombinant proteins induced immune response of tilapia through cytokines signal pathway and activated high cytotoxic T-lymphocyte (CTL) activity of tilapia. Furthermore, vaccinated tilapia conferred high levels of protection against challenge with a lethal dose of highly virulent serovar Ⅰa (highest RPS was 91.60% in AL and essC protein groups). Our results indicated that the eight recombinant proteins induced high level of immune responses and offered protection against S. agalactiae infection, could be potential subunit vaccine candidates.
    [Abstract] [Full Text] [Related] [New Search]