These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The Interaction of Bovine β-Lactoglobulin with Caffeic Acid: From Binding Mechanisms to Functional Complexes.
    Author: Stănciuc N, Râpeanu G, Bahrim GE, Aprodu I.
    Journal: Biomolecules; 2020 Jul 23; 10(8):. PubMed ID: 32718063.
    Abstract:
    In this study, the interaction of native and transglutaminase (Tgase) cross-linked β-lactoglobulin (β-LG) with caffeic acid (CA) was examined, aiming to obtain functional composites. Knowledge on the binding affinity and interaction mechanism was provided by performing fluorescence spectroscopy measurements, after heating the native and cross-linked protein at temperatures ranging from 25 to 95 °C. Regardless of the protein aggregation state, a static quenching mechanism of intrinsic fluorescence of β-LG by CA was established. The decrease of the Stern-Volmer constants with the temperature increase indicating the facile dissociation of the weakly bound complexes. The thermodynamic analysis suggested the existence of multiple contact types, such as Van der Waals' force and hydrogen bonds, between β-LG and CA. Further molecular docking tests indicated the existence of various CA binding sites on the β-LG surface heat-treated at different temperatures. Anyway, regardless of the simulated temperature, the CA-β-LG assemblies appeared to be unstable. Compared to native protein, the CA-β-LG and CA-β-LGTgase complexes (ratio 1:1) exhibited significantly higher antioxidant activity and inhibitory effects on α-glucosidase, α-amylase, and pancreatic lipase, enzymes associated with metabolic syndrome. These findings might help the knowledge-based development of novel food ingredients with valuable biological properties.
    [Abstract] [Full Text] [Related] [New Search]