These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Toward high-performance nanofibrillated cellulose/aramid fibrid paper-based composites via polyethyleneimine-assisted decoration of silica nanoparticle onto aramid fibrid. Author: Xie F, Bao J, Zhuo L, Zhao Y, Dang W, Si L, Yao C, Zhang M, Lu Z. Journal: Carbohydr Polym; 2020 Oct 01; 245():116610. PubMed ID: 32718657. Abstract: Flexible paper-based nanocomposites dielectrics are of crucial importance in electrical insulation and advanced electrical power systems. In this work, a novel nanofibrillated cellulose/aramid fibrid (NFC/AF) composite was fabricated by vacuum-assisted filtration process. In order to improve the dielectric property of the composites, carboxylated nano-SiO2 was chemically coated onto aramid fibrid via molecular self-assembly with the aid of phosphoric acid (PA) pretreatment and subsequent polyethyleneimine (PEI) functionalization. It was found that composites prepared by NFC and (PEI/SiO2)-modified AF (after crosslinking) ((PEI/SiO2)-AF) showed dense structure, which was mainly due to enhanced interfacial interaction between AF and NFC. Consequently, NFC/(PEI/SiO2)-AF paper-based composites showed better tensile toughness (∼6 % elongation at break) and mechanical strength (∼36.28 MPa), in comparison with NFC/AF. More importantly, the electrical insulation performance and thermal stability of the composites were significantly improved. Accordingly, this work provides a facile approach to fabricate high-performance dielectric composites especially for high-temperature electrical insulation applications.[Abstract] [Full Text] [Related] [New Search]