These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparison of cyanobacterial communities in temperate deserts: A cue for artificial inoculation of biological soil crusts. Author: Wang J, Zhang P, Bao JT, Zhao JC, Song G, Yang HT, Huang L, He MZ, Li XR. Journal: Sci Total Environ; 2020 Nov 25; 745():140970. PubMed ID: 32731072. Abstract: The topsoil cyanobacteria in biological soil crusts (BSCs) play a vital role in stabilizing soil surface of disturbed habitats in water and nutrient-poor ecosystems. Currently, artificial inoculation of BSCs is considered as an effective approach to restore habitats and accelerate ecosystem regeneration. Understanding the character of cyanobacterial communities is the necessary prerequisite to explore the artificial inoculation of BSCs. For this reason, cyanobacterial communities in BSCs were compared between two mid-latitute temperate deserts with distinct precipitation patterns. The results showed that Oscillatoriales and Nostocales dominated crusts in the Tengger desert with majority of rainfall in summer and early autumn while Oscillatoriales dominated crusts in the Kyzyl kum desert with more rainfall in winter and early spring. Moreover, filamentous Microcoleus vaginatus overwhelmingly dominated all the crusts in both deserts with Mastigocladopsis sp. and Chroococcidiopsis spp. as the dominant heterocystous cyanobacteria. Of note, genus Wilmottia kept a relative stable and high abundance in both deserts. The top two abundantly shared cyanobacteria (> 1% of total sequences) were M. vaginatus and Mastigocladopsis sp. in both deserts, while 16 genera with significant variances were found between the two deserts (P <0.05). Total variations of cyanobacterial communities across the deserts were largely explained by a combination of biotic factors (microbial biomass C and N) and abiotic factors (soil pH, soil water content, soil water holding capacity, and soil available potassium). Compared to better-developed crusts, cyanobacterial abundance was higher in cyanobacterial crusts. BSC type and/or geographic location significantly affected cyanobacterial Shannon diversity without significantly influencing species richness. Our data suggest that the basic and major groups (e.g. M. vaginatus, Wilmottia spp., Mastigocladopsis sp., and Chroococcidiopsis spp.), and the abundantly shared phylotypes which showed significant difference in cyanobacterial communities between deserts, should be focused on to further explore the artificial inoculation of BSCs in temperate drylands.[Abstract] [Full Text] [Related] [New Search]