These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exploratory data analysis based efficient QRS-complex detection technique with minimal computational load. Author: Rahul J, Sora M, Sharma LD. Journal: Phys Eng Sci Med; 2020 Sep; 43(3):1049-1067. PubMed ID: 32734450. Abstract: Detection of QRS-complex in the electrocardiogram (ECG) plays a decisive role in cardiac disorder detection. We face many challenges in terms of powerline interference, baseline drift, and abnormal varying peaks. In this work, we propose an exploratory data analysis (EDA) based efficient QRS-complex detection technique with minimal computational load. This paper includes median and moving average filter for pre-processing of the ECG. The peak of filtered ECG is enhanced to third power of the signal. The root mean square (rms) of the signal is estimated for the decision making rule. This technique adapted the new concept for isoelectric line identification and EDA based QRS-complex detection. In this paper, total 10,70,981 beats were used for validation from MIT BIH-Arrhythmia Database (MIT-BIH), Fantasia Database (FDB), European ST-T database (ESTD), a self recorded dataset (SDB), and fetal ECG database (FTDB). Overall sensitivity of 99.65 % and positive predictivity rate of 99.84 % have been achieved. The proposed technique doesn't require selection, setting, and training for QRS-complex detection. Thus, this paper presents a QRS-complex detection technique based on simple decision rules.[Abstract] [Full Text] [Related] [New Search]