These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Antimicrobial antisense RNA delivery to F-pili producing multidrug-resistant bacteria via a genetically engineered bacteriophage.
    Author: Suzuki Y, Ishimoto T, Fujita S, Kiryu S, Wada M, Akatsuka T, Saito M, Kawano M.
    Journal: Biochem Biophys Res Commun; 2020 Sep 24; 530(3):533-540. PubMed ID: 32739024.
    Abstract:
    Multidrug-resistant bacteria are a growing issue worldwide. This study developed a convenient and effective method to downregulate the expression of a specific gene to produce a novel antimicrobial tool using a small (140 nucleotide) RNA with a 24-nucleotide antisense (as) region from an arabinose-inducible expression phagemid vector in Escherichia coli. Knockdown effects of rpoS encoding RNA polymerase sigma factor were observed using this inducible artificial asRNA approach. asRNAs targeting several essential E. coli genes produced significant growth defects, especially when targeted to acpP and ribosomal protein coding genes rplN, rplL, and rpsM. Growth inhibited phenotypes were facilitated in hfq- conditions. Phage lysates were prepared from cells harboring phagemids as a lethal-agent delivery tool. Targeting the rpsM gene by phagemid-derived M13 phage infection of E. coli containing a carbapenem-producing F-plasmid and multidrug-resistant Klebsiella pneumoniae containing an F-plasmid resulted in the death of over 99.99% of infected bacteria. This study provides a possible strategy for treating bacterial infection and can be applied to any F-pilus producing bacterial species.
    [Abstract] [Full Text] [Related] [New Search]