These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Midazolam Alters Acid-Base Status Less than Azaperone during the Capture and Transport of Southern White Rhinoceroses (Ceratotherium simum simum).
    Author: Pohlin F, Buss P, Hooijberg EH, Meyer LCR.
    Journal: Animals (Basel); 2020 Jul 31; 10(8):. PubMed ID: 32751806.
    Abstract:
    Acidemia represents a major life-threatening factor during rhinoceros capture. The acid-base status during rhinoceros transport is unknown. The purpose of this study was to describe changes in acid-base status during rhinoceros capture and transport and compare these changes between rhinoceroses sedated with azaperone or midazolam. Twenty-three wild white rhinoceros bulls were road-transported 280 km for reasons unrelated to this study. Rhinoceroses were captured with etorphine-azaperone (Group A) or etorphine-midazolam (Group M). During transport, azaperone (Group A) or midazolam (Group M) was re-administered every 2 h and venous blood collected. Changes in blood pH and associated variables were compared over time and between groups using a general linear mixed model. Rhinoceroses of both groups experienced a respiratory and metabolic acidosis during capture (pH 7.109 ± 0.099 and 7.196 ± 0.111 for Group A and Group M, respectively) that was quickly compensated for by the start of transport (pH 7.441 ± 0.035 and 7.430 ± 0.057) and remained stable throughout the journey. Rhinoceroses from Group M showed a smaller decrease in pH and associated variables at capture than rhinoceroses from Group A (p = 0.012). The use of midazolam instead of azaperone could therefore improve the success of rhinoceros capture and thus, contribute to the outcome of important conservation translocations.
    [Abstract] [Full Text] [Related] [New Search]