These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Engineered bovine serum albumin-based nanoparticles with pH-sensitivity for doxorubicin delivery and controlled release. Author: Yang Z, Zhang N, Ma T, Liu L, Zhao L, Xie H. Journal: Drug Deliv; 2020 Dec; 27(1):1156-1164. PubMed ID: 32755291. Abstract: In this work, we prepared a stimuli-responsive system for drug delivery and controlled release by engineering the bovine serum albumin (BSA). The doxorubicin (DOX)-loaded BSA nanoparticles (NPs) were conveniently prepared using desolvation method, followed by crosslinking through Schiff base bonds, leading to pH-sensitive DOX-loaded system (DOXs@BSA NPs). The resulted DOXs@BSA NPs showed high drug loading capacity (21.4%), and the particle size was about 130 nm with narrow polydispersity and high negative surface charge (-20.5 mV). The pH-sensitivity of DOXs@BSA NPs was evidenced by the size changes and charge reversal after incubation at different pH values. The DOXs@BSA NPs showed high serum stability which indicated the prolonged circulation time. The in vitro drug release experiment showed that the release of DOX was obviously accelerated by acidity because of disassembly of NPs induced by cleavage of Schiff base bonds. The drug release mechanism was thoroughly studied using a semi-empirical model, further confirming the pH played an important role in drug controlled release process. The results of cytotoxicity assay revealed that DOXs@BSA NPs exhibited much higher toxic effects for tumor cells in comparison to the free DOX control. Collectively, these results demonstrated that DOXs@BSA NPs might be potential application for drug delivery and controlled release in cancer chemotherapy. Moreover, this work also showed that preparation of stimuli-responsive drug delivery system by engineering the commercial biomaterials could be a promising method to develop multi-functional nanomedicine.[Abstract] [Full Text] [Related] [New Search]