These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The metabolism of ribosomal proteins microinjected into the oocytes of Xenopus laevis.
    Author: Tsurugi K, Motizuki M, Mitsui K, Endo Y, Shiokawa K.
    Journal: Exp Cell Res; 1988 Jan; 174(1):177-87. PubMed ID: 3275544.
    Abstract:
    When the total proteins from Xenopus laevis 60 S ribosomal subunits (TP60) were 3H-labeled in vitro and injected back into X. laevis oocytes, most 3H-TP60 are integrated into the cytoplasmic 60 S subunits via the nucleus during 16 h of incubation. In the oocytes whose rRNA synthesis is inhibited, 3H-TP60 are rapidly degraded with a half-life of 2-3 h. This degradation ceased as soon as rRNA synthesis was resumed, suggesting that ribosomal proteins unassociated with nascent rRNA are unstable in the oocytes. The degradation of 3H-TP60 in the absence of RNA synthesis was inhibited by iodoacetamide, a cysteine protease inhibitor, resulting in the accumulation of 3H-TP60 in the nucleus reaching about a threefold concentration in the cytoplasm. Considering the results with enucleated oocytes, we suggest that the X. laevis nucleus has a limited capacity to accumulate ribosomal proteins in an active manner but that those ribosomal proteins accumulated in excess over rRNA synthesis are degraded by a cysteine protease in the nucleus. By contrast, ribosomal proteins from Escherichia coli only equilibrate between the nucleus and the cytoplasm and are degraded by serine protease(s) in the cytoplasm without being integrated in the form of ribosomes in the nucleus.
    [Abstract] [Full Text] [Related] [New Search]