These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of calcium carbide-ripened sapota (Achras sapota) fruit by headspace SPME-GC-MS. Author: Vemula M, Shaikh AS, Chilakala S, Tallapally M, Upadhyayula V. Journal: Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Oct; 37(10):1601-1609. PubMed ID: 32755500. Abstract: The effect of post-harvest ripening by ethylene and calcium carbide was studied by headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) method. Sapota (sapodilla) fruits were ripened with ethylene gas, technical grade calcium carbide and pure calcium carbide ripeners and the samples were homogenised after complete ripening. The samples were subjected to HS-SPME-GC-MS and the obtained results showed the presence of various alcohols, aldehydes, acids, ketones and esters which were commonly present in the samples. The fruit samples ripened with technical grade calcium carbide showed the presence of 3,5-dimethyl-1,2,4-trithiolane isomers, which can be used as markers to identify sapota fruits ripened with technical grade calcium carbide. The technical grade calcium carbide contains divinyl sulphide which might have been transformed into the trithiolane isomers. These isomers were not observed in the fruits ripened with pure calcium carbide and also with ethylene gas. Hence the formation of trithiolane residues may be attributed to the presence of divinyl sulphide impurity present in calcium carbide and its conversion due to the action of ethylene releasing enzymes present in the fruits.[Abstract] [Full Text] [Related] [New Search]