These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolism of periplasmic membrane-derived oligosaccharides by the predatory bacterium Bdellovibrio bacteriovorus 109J.
    Author: Ruby EG, McCabe JB.
    Journal: J Bacteriol; 1988 Feb; 170(2):646-52. PubMed ID: 3276663.
    Abstract:
    Membrane-derived oligosaccharides (MDO), a class of osmotically active carbohydrates, are the major organic solutes present in the periplasm of Escherichia coli and many other gram-negative bacteria when cells are grown in a medium of low osmolarity. Analyses of growing cells of Bdellovibrio bacteriovorus, a gram-negative predator of other bacteria, have confirmed that they also synthesize a characteristic MDO-like class of oligosaccharides. The natural growth environment of bdellovibrios is the periplasm of other gram-negative bacteria. Because of this location, prey cell MDO constitute a potential source of organic nutrients for growing bdellovibrios. Using cells of E. coli whose MDO were 3H labeled, we examined the extent to which B. bacteriovorus 109J metabolizes these prey cell components. Interestingly, there was neither significant degradation nor incorporation of prey cell MDO by bdellovibrios during the course of their intracellular growth. In fact, bdellovibrios had little capability either to degrade extracellular MDO that was made available to them or to transport glucose, the major monomeric constituent of prey cell MDO. Instead, periplasmic MDO were irreversibly lost to the extracellular environment during the period of bdellovibrio attack and penetration. Thus, although prey cell periplasmic proteins are retained, other important periplasmic components are released early in the bdellovibrio growth cycle. The loss of these MDO may aid in the destabilization of the prey cell plasma membrane, increasing the availability of cytoplasmic constituents to the periplasmic bdellovibrio.
    [Abstract] [Full Text] [Related] [New Search]