These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53(Al) for efficient tetracycline degradation in water: Coexistence of radical and non-radical reactions. Author: Liu F, Cao J, Yang Z, Xiong W, Xu Z, Song P, Jia M, Sun S, Zhang Y, Zhong X. Journal: J Colloid Interface Sci; 2021 Jan 01; 581(Pt A):195-204. PubMed ID: 32771731. Abstract: Compared with the transition metal induced homogeneous catalytic system, the heterogeneous catalytic system based on transition metal-doped metal organic frameworks (MOFs) were stable for the efficient utilization of transition metal and avoiding the metal leaching. The aim of this work is to synthesize Co-doped MIL-53(Al) by one-step solvent thermal method and use it to activate peroxymonosulfate (PMS) to remove tetracycline (TC) in water. The successful synthesis of Co-MIL-53(Al) samples was demonstrated by XDR, SEM and FTIR characterizations. The 25% Co-MIL-53(Al)/PMS system showed the optimal TC removal effect compared to the PMS alone and MIL-53(Al)/PMS system. The catalytic performances of Co-MIL-53(Al)/PMS system in conditions of different pH, co-existing substances and water bodies were investigated. Quenching experiment and electron paramagnetic resonance (EPR) showed that the degradation mechanism by Co-MIL-53(Al) activation PMS was mainly attributed to sulfate radical (SO4•-) and singlet oxygen (1O2) non-radical. The degradation intermediates of TC were also identified and the possible degradation pathways were proposed. Co-MIL-53(Al) showed good activity after four cycles. These findings demonstrated that Co-MIL-53(Al) can be a promising heterogeneous catalyst for activating PMS to degrade TC.[Abstract] [Full Text] [Related] [New Search]