These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MiR-181c-5p Promotes Inflammatory Response during Hypoxia/Reoxygenation Injury by Downregulating Protein Tyrosine Phosphatase Nonreceptor Type 4 in H9C2 Cardiomyocytes.
    Author: Wang S, Ge L, Zhang D, Wang L, Liu H, Ye X, Liang W, Li J, Ma H, Cai Y, Xia Z.
    Journal: Oxid Med Cell Longev; 2020; 2020():7913418. PubMed ID: 32774684.
    Abstract:
    BACKGROUND: Constitutive nuclear factor kappa B (NFκB) activation has been shown to exacerbate during myocardial ischemia/reperfusion (I/R) injury. We recently showed that miR-181c-5p exacerbated cardiomyocytes injury and apoptosis by directly targeting the 3'-untranslated region of protein tyrosine phosphatase nonreceptor type 4 (PTPN4). However, whether miR-181c-5p mediates cardiac I/R injury through NFκB-mediated inflammation is unknown. Thus, the present study aimed to investigate the role of miR-181c-5p during myocardial I/R injury and explore its mechanism in relation to inflammation in H9C2 cardiomyocytes. METHODS AND RESULTS: In hypoxia/reoxygenation (H/R, 6 h hypoxia followed by 6 h reoxygenation)-stimulated H9C2 cardiomyocytes or postischemic myocardium of rat, the expression of miR-181c-5p was significantly upregulated, which was concomitant increased NFκB activity when compared to the nonhypoxic or nonischemic control groups. This is indicative that miR-181c-5p may be involved in NFκB-mediated inflammation during myocardial I/R injury. To investigate the potential role of miR-181c-5p in H/R-induced cell inflammation and injury, H9C2 cardiomyocytes were transfected with the miR-181c-5p agomir. Overexpression of miR-181c-5p significantly aggravated H/R-induced cell injury (increased lactate dehydrogenase (LDH) level) and exacerbated NFκB-mediated inflammation (greater phosphorylation and degradation of IκBα, phosphorylation of p65, and increased levels of proinflammatory cytokines tumor necrosis factor α (TNFα), interleukin (IL)-6, and IL-1β). In contrast, inhibition of miR-181c-5p by its antagomir transfection in vitro had the opposite effect. Furthermore, overexpression of miR-181c-5p significantly enhanced lipopolysaccharide-induced NFκB signalling. Additionally, knockdown of PTPN4, the direct target of miR-181c-5p, significantly aggravated H/R-induced phosphorylation and degradation of IκBα, phosphorylation of p65, and the levels of proinflammatory cytokines. PTPN4 knockdown also cancelled miR-181c-5p antagomir mediated anti-inflammatory effects in H9C2 cardiomyocytes during H/R injury. CONCLUSIONS: It is concluded that miR-181c-5p may exacerbate myocardial I/R injury and NFκB-mediated inflammation via PTPN4, and that targeting miR-181c-5p/PTPN4/NFκB signalling may represent a novel strategy to combat myocardial I/R injury.
    [Abstract] [Full Text] [Related] [New Search]