These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Salcaprozate sodium (SNAC) enhances permeability of octreotide across isolated rat and human intestinal epithelial mucosae in Ussing chambers. Author: Fattah S, Ismaiel M, Murphy B, Rulikowska A, Frias JM, Winter DC, Brayden DJ. Journal: Eur J Pharm Sci; 2020 Nov 01; 154():105509. PubMed ID: 32777258. Abstract: Octreotide is approved as a one-month injectable for treatment of acromegaly and neuroendocrine tumours. Oral delivery of the octapeptide is a challenge due mainly to low intestinal epithelial permeability. The intestinal permeation enhancer (PE) salcaprozate sodium (SNAC) has Generally Regarded As Safe (GRAS) status and is a component of an approved oral peptide formulation. The purpose of the study was to examine the capacity of salcaprozate sodium (SNAC), to increase its permeability across isolated rat intestinal mucosae from five regions and across human colonic mucosae mounted in Ussing chambers. Apical-side buffers were Kreb's-Henseleit (KH), fasted simulated intestinal fluid (FaSSIF-V2), rat simulated intestinal fluid (rSIF), and colonic simulated intestinal fluid (FaSSCoF). The basal apparent permeability coefficient (Papp) of [3H]-octreotide was equally low across rat intestinal regional mucosae in KH, rSIF, and FaSSIF-V2. Apical addition of 20 mM SNAC increased the Papp across rat tissue in KH: colon (by 3.2-fold) > ileum (3.4-fold) > upper jejunum (2.3-fold) > duodenum (1.4-fold) > stomach (1.4-fold). 20 mM and 40 mM SNAC also increased the Papp by 1.5-fold and 2.1-fold respectively across human colonic mucosae in KH. Transepithelial electrical resistance (TEER) values were reduced in the presence in SNAC especially in colonic regions. LC-MS/MS analysis of permeated unlabelled octreotide across human colonic mucosae in the presence of SNAC indicated that [3H]-octreotide remained intact. No gross damage was caused to rat or human mucosae by SNAC. Attenuation of the effects of SNAC was seen in rat jejunal mucosae incubated with FaSSIF-V2 and rSIF, and also to some extent in human colonic mucosae using FaSSCoF, suggesting interaction between SNAC with buffer components. In conclusion, SNAC showed potential as an intestinal permeation enhancer for octreotide, but in vivo efficacy may be attenuated by interactions with GI luminal fluid contents.[Abstract] [Full Text] [Related] [New Search]