These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Two approximately 300 kilodalton Plasmodium falciparum proteins at the surface membrane of infected erythrocytes. Author: Howard RJ, Barnwell JW, Rock EP, Neequaye J, Ofori-Adjei D, Maloy WL, Lyon JA, Saul A. Journal: Mol Biochem Parasitol; 1988 Jan 15; 27(2-3):207-23. PubMed ID: 3278227. Abstract: Two very large Plasmodium falciparum proteins are identified as constituents of the infected erythrocyte membrane. Sera were obtained from Aotus monkeys that had been repeatedly infected with asexual P. falciparum from one of four strains. The capacity of these sera to block in vitro cytoadherence of infected erythrocytes and agglutinate intact infected cells was determined. The sera were also used to immunoprecipitate protein antigens from detergent extracts of 125I-surface labeled or biosynthetically radiolabeled infected erythrocytes. For each serum/antigen combination, precipitation of only one protein correlated with the ability of the serum to interfere with cytoadherence and agglutinate infected cells. This malarial protein, denoted Pf EMP 1 (P. falciparum-erythrocyte-membrane-protein 1) bore strain-specific epitope(s) on the cell surface and displayed size heterogeneity (Mr approximately 220,000-350,000). Pf EMP 1 was strongly labeled by cell-surface radioiodination but was a quantitatively very minor malarial protein. Pf EMP 1 was distinguished by its size, surface accessibility and antigenic properties from a more predominant malarial protein in the same size range (Pf EMP 2) that is under the infected erythrocyte membrane at knobs. Monoclonal antibodies and rabbit antisera raised against Pf EMP 2 were used to show that this size heterogeneous antigen was indistinguishable from the previously described MESA (mature parasite infected erythrocyte surface antigen), identified by precipitation with rabbit antisera raised against the MESA hexapeptide repeats. Antibodies raised against Pf EMP 2/MESA did not precipitate Pf EMP 1. We conclude that Pf EMP 1 is either directly responsible for the cytoadherence phenomenon, or is very closely associated with another as yet unidentified functional molecule. Pf EMP 2/MESA must have a structural property/function that is important under the host cell membrane.[Abstract] [Full Text] [Related] [New Search]