These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Large Damping-Like Spin-Orbit Torque in a 2D Conductive 1T-TaS2 Monolayer.
    Author: Husain S, Chen X, Gupta R, Behera N, Kumar P, Edvinsson T, García-Sánchez F, Brucas R, Chaudhary S, Sanyal B, Svedlindh P, Kumar A.
    Journal: Nano Lett; 2020 Sep 09; 20(9):6372-6380. PubMed ID: 32786947.
    Abstract:
    A damping-like spin-orbit torque (SOT) is a prerequisite for ultralow-power spin logic devices. Here, we report on the damping-like SOT in just one monolayer of the conducting transition-metal dichalcogenide (TMD) TaS2 interfaced with a NiFe (Py) ferromagnetic layer. The charge-spin conversion efficiency is found to be 0.25 ± 0.03 in TaS2(0.88)/Py(7), and the spin Hall conductivity (14.9×1052eΩ-1m-1) is found to be superior to values reported for other TMDs. We also observed sizable field-like torque in this heterostructure. The origin of this large damping-like SOT can be found in the interfacial properties of the TaS2/Py heterostructure, and the experimental findings are complemented by the results from density functional theory calculations. It is envisioned that the interplay between interfacial spin-orbit coupling and crystal symmetry yielding large damping-like SOT. The dominance of damping-like torque demonstrated in our study provides a promising path for designing the next-generation conducting TMD-based low-powered quantum memory devices.
    [Abstract] [Full Text] [Related] [New Search]