These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: "Flexible-Acceptor" General Solubility Equation for beyond Rule of 5 Drugs.
    Author: Avdeef A, Kansy M.
    Journal: Mol Pharm; 2020 Oct 05; 17(10):3930-3940. PubMed ID: 32787270.
    Abstract:
    This study describes a novel nonlinear variant of the well-known Yalkowsky general solubility equation (GSE). The modified equation can be trained with small molecules, mostly from the Lipinski Rule of 5 (Ro5) chemical space, to predict the intrinsic aqueous solubility, S0, of large molecules (MW > 800 Da) from beyond the rule of 5 (bRo5) space, to an accuracy almost equal to that of a recently described random forest regression (RFR) machine learning analysis. The new approach replaces the GSE constant factors in the intercept (0.5), the octanol-water log P (-1.0), and melting point, mp (-0.01) terms with simple exponential functions incorporating the sum descriptor, Φ+B (Kier Φ molecular flexibility and Abraham H-bond acceptor potential). The constants in the modified three-variable (log P, mp, Φ+B) equation were determined by partial least-squares (PLS) refinement using a small-molecule log S0 training set (n = 6541) of mostly druglike molecules. In this "flexible-acceptor" GSE(Φ,B) model, the coefficient of log P (normally fixed at -1.0) varies smoothly from -1.1 for rigid nonionizable molecules (Φ+B = 0) to -0.39 for typically flexible (Φ ∼ 20, B ∼ 6) large molecules. The intercept (traditionally fixed at +0.5) varies smoothly from +1.9 for completely inflexible small molecules to -2.2 for typically flexible large molecules. The mp coefficient (-0.007) remains practically constant, near the traditional value (-0.01) for most molecules, which suggests that the small-to-large molecule continuum is mainly solvation responsive, apparently with only minor changes in the crystal lattice contributions. For a test set of 32 large molecules (e.g., cyclosporine A, gramicidin A, leuprolide, nafarelin, oxytocin, vancomycin, and mostly natural-product-derived therapeutics used in infectious/viral diseases, in immunosuppression, and in oncology) the modified equation predicted the intrinsic solubility with a root-mean-square error of 1.10 log unit, compared to 3.0 by the traditional GSE, and 1.07 by RFR.
    [Abstract] [Full Text] [Related] [New Search]