These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of microbubble pre-ozonation time and pH on trihalomethanes and haloacetic acids formation in pilot-scale tropical peat water treatments for drinking water purposes. Author: Qadafi M, Notodarmojo S, Zevi Y. Journal: Sci Total Environ; 2020 Dec 10; 747():141540. PubMed ID: 32791420. Abstract: The high concentrations of dissolved organic matter (DOM), chloride, and bromide in tropical peat water have a significant impact on the formation of carcinogenic disinfection by-products (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs), especially during the chlorination process. Therefore, other pretreatment methods to effectively remove these harmful substances in the water during treatment are needed. The aim of this study was to determine the effects of microbubble pre-ozonation pH on the reduction of THM4 and HAA5 formed during the peat water treatment process and to determine the best conditions for microbubble pre-ozonation to reduce the formation of these two classes of DBPs. The microbubble pre-ozonation was conducted at a pH of 5.5, 7, and 8.5. Furthermore, the primary treatments applied after this pretreatment were coagulation and activated carbon adsorption before post-chlorine disinfection. The coagulation process using aluminum sulfate and activated carbon adsorption succeeded in reducing the formation of THM4 after chlorination, to a level below USEPA standards, but the concentration of HAA5 was still high. However, the use of microbubble pre-ozonation significantly reduced the formation of both classes of compounds during the chlorination process of the peat water. Also, the concentration of THM4 increased during the pre-ozonation process in all pH conditions, but HAA5 decreased except in alkaline state. Furthermore, the ideal conditions for microbubble pre-ozonation on peat water were at pH 7 (neutral) after 30 min, with the total THM4 concentration at 33.73 ± 0.40 μg/L, and that of HAA5 at 49.89 ± 0.09 μg/L, falling below the USEPA standard.[Abstract] [Full Text] [Related] [New Search]