These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Using stable nitrogen and oxygen isotopes to identify nitrate sources in the Lancang River, upper Mekong. Author: Guo X, Tang Y, Xu Y, Zhang S, Ma J, Xiao S, Ji D, Yang Z, Liu D. Journal: J Environ Manage; 2020 Nov 15; 274():111197. PubMed ID: 32798850. Abstract: The Lancang River in China is the headwater of the Mekong River. The impacts of reservoirs on the water, sediment and nutrient trapping in the Lancang River have attracted considerable attention, both locally and abroad. In this research, watershed-scale nitrogen load and nitrate sources along the Lancang River upstream in free-flowing reaches (FFRs) and downstream regulated reaches (RRs) were analyzed using stable nitrogen and oxygen isotopes. The results showed that the nitrogen nutrient (TN, NO3- and NH4+) concentration increased from upstream to downstream along the Lancang River, and the highest values come from large-scale urban samples rather than the reservoirs. Compared to other large rivers in China, such as the Yangtze River, Yellow River and Yalu Tsangpo River, nitrogen nutrient content in the Lancang River is at low level. The nitrate concentration ranged from 0.14 mg/L to 0.63mg/Land increased significantly downstream. The isotopic values ranged from 2.8‰ to 5.2‰ for δ15N-NO3- and from 4‰ to 8.5‰ for δ18O-NO3- along the river, and the δ15N-NO3- value rose significantly downstream. According to the nitrogen and oxygen isotope approach, soil organic nitrogen mineralization was the main source of the nitrate with an average of 51% contribution; domestic sewage was the second largest contributor with an average of 33% but increase downstream, likely due to the significantly larger population in the downstream region. Furthermore, the nitrate concentration decreased and δ15N- and δ18O-NO3- enriched in the Nuozhadu reservoir, indicating that the reservoir may enhance nitrate consumption and reduce nitrogen pollution to downstream reaches. The results provide a perspective of nitrogen nutrient for the trans-border river management and more insight researches are called for understanding the controversial nutrient transport topic in this region.[Abstract] [Full Text] [Related] [New Search]