These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isotope partitioning for NAD-malic enzyme from Ascaris suum confirms a steady-state random kinetic mechanism.
    Author: Chen CY, Harris BG, Cook PF.
    Journal: Biochemistry; 1988 Jan 12; 27(1):212-9. PubMed ID: 3280016.
    Abstract:
    Isotope partitioning studies beginning with E.[14C]NAD, E.[14C]malate, E.[14C]NAD.Mg2+, and E.Mg.[14C]malate suggest a steady-state random mechanism for the NAD-malic enzyme. Isotope trapping beginning with E.[14C]NAD and with varying concentrations of Mg2+ and malate in the chase solution indicates that Mg2+ is added in rapid equilibrium and must be added prior to malate for productive ternary complex formation. Equal percentage trapping from E.[14C]NAD.Mg and E.Mg.[14C]malate indicates the mechanism is steady-state random with equal off-rates for NAD and malate from E.NAD.Mg.malate. The off-rates for both do not change significantly in the ternary E.Mg.malate and E.NAD.Mg complexes, nor does the off-rate change for NAD from E.NAD. No trapping of malate was obtained from E.[14C]malate, suggesting that this complex is nonproductive. A quantitative analysis of the data allows an estimation of values for a number of the rate constants along the reaction pathway.
    [Abstract] [Full Text] [Related] [New Search]