These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cyclodextrin-based metal-organic frameworks for pulmonary delivery of curcumin with improved solubility and fine aerodynamic performance.
    Author: Zhou Y, Zhao Y, Niu B, Luo Q, Zhang Y, Quan G, Pan X, Wu C.
    Journal: Int J Pharm; 2020 Oct 15; 588():119777. PubMed ID: 32805383.
    Abstract:
    Pulmonary drug delivery has attracted considerable attention in recent years. However, it is still a major challenge to deliver poorly water-soluble drugs to lungs with good solubility and fine aerodynamic performance. In this study, curcumin was loaded into cyclodextrin-based metal-organic frameworks (CD-MOFs) for pulmonary delivery. Compared with micronized curcumin prepared by jet milling, curcumin-loaded CD-MOFs (Cur-CD-MOFs) exhibited excellent aerodynamic performance, which was attributed to the unique porous structure and lower density of CD-MOFs. The dissolution test showed that the drug release rate of Cur-CD-MOFs was much faster than that of micronized curcumin. The all-atom molecular dynamic simulation showed that curcumin molecules were loaded into the hydrophobic cavities of CD-MOFs or entered into the large hydrophilic cavities to form nanoclusters. The elevated wettability of Cur-CD-MOFs and the unique spatial distribution feature of curcumin in porous interior of CD-MOFs might be favorable for the improved dissolution rate. The DPPH radical scavenging test showed that Cur-CD-MOFs had prominent antioxidant activities. Therefore, CD-MOFs were expected to be promising carriers for pulmonary delivery of poorly water-soluble drugs.
    [Abstract] [Full Text] [Related] [New Search]