These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Three-dimensional self-floating foam composite impregnated with porous carbon and polyaniline for solar steam generation. Author: Wang K, Cheng Z, Li P, Zheng Y, Liu Z, Cui L, Xu J, Liu J. Journal: J Colloid Interface Sci; 2021 Jan 01; 581(Pt B):504-513. PubMed ID: 32805670. Abstract: A promising approach to resolving insufficient freshwater resources is utilizing solar energy for steam generation. Although various types of photothermal conversion materials have been developed, there are still some obstacles, such as complicated system structure fabrication and low energy utilization, that severely hinder their practical application. Herein, we designed and produced a self-floating porous carbon/polyaniline foam (PCPF) evaporator via impregnating melamine foam with porous carbon generated following the bottom-up pyrolytic method and polyaniline, followed by thermal treatment, for efficient solar steam generation. The PCPF obtained with a porous carbon (PC) to polyaniline (PAN) mass ratio of 3:5 (PCPF-3) exhibited a rich pore structure, good hydrophilicity, low thermal conductivity (0.0413 W m-1 K-1), and excellent light absorption (96.1%). Our results show that, without additional thermal insulators, the evaporation rate of PCPF-3 reached 1.496 kg m-2 h-1, and the photothermal conversion efficiency reached 87.3% under one sun irradiation. Furthermore, it also exhibited good durability and desalination performance. This type of environmentally friendly, low-cost, and stable photothermal conversion material could be used in water treatment and seawater desalination.[Abstract] [Full Text] [Related] [New Search]