These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Manipulating the Optoelectronic Properties of Quasi-type II CuInS2/CdS Core/Shell Quantum Dots for Photoelectrochemical Cell Applications.
    Author: Wang C, Tong X, Wang W, Xu JY, Besteiro LV, Channa AI, Lin F, Wu J, Wang Q, Govorov AO, Vomiero A, Wang ZM.
    Journal: ACS Appl Mater Interfaces; 2020 Aug 12; 12(32):36277-36286. PubMed ID: 32805789.
    Abstract:
    Colloidal core/shell heterostructured quantum dots (QDs) possessing quasi-type II band structure have demonstrated effective surface passivation and prolonged exciton lifetime, leading to enhanced charge separation/transfer efficiencies that are promising for photovoltaic device applications. Herein, we synthesized CuInS2 (CIS)/CdS core/shell heterostructured QDs and manipulated the optoelectronic properties via controlling the CdS shell thickness. The shell-thickness-dependent optical properties indicate the existence of a quasi-type II band structure in such core/shell QDs, which was verified by ultrafast spectroscopy and theoretical simulations. These quasi-type II core/shell QDs having various shell thicknesses are used as light absorbers for the fabrication of solar-driven QDs-based photoelectrochemical (PEC) devices, exhibiting an optimized photocurrent density of ∼6.0 mA/cm2 and excellent stability under simulated AM 1.5G solar illumination. The results demonstrate that quasi-type II CIS/CdS core/shell heterostructured QDs with tailored optoelectronic properties are promising to realize high-performance QDs-based solar energy conversion devices for the production of solar fuels.
    [Abstract] [Full Text] [Related] [New Search]