These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dual-Heteroatom-Doped Reduced Graphene Oxide Sheets Conjoined CoNi-Based Carbide and Sulfide Nanoparticles for Efficient Oxygen Evolution Reaction.
    Author: Zakaria MB, Zheng D, Apfel UP, Nagata T, Kenawy ES, Lin J.
    Journal: ACS Appl Mater Interfaces; 2020 Sep 09; 12(36):40186-40193. PubMed ID: 32805866.
    Abstract:
    Intensive research is being conducted into highly efficient and cheap nanoscale materials for the electrocatalytic oxidation of water. In this context, we built heterostructures of multilayered CoNi-cyanide bridged coordination (CoNi-CP) nanosheets and graphene oxide (GO) sheets (CoNi-CP/GO) as a source for heterostructured functional electrodes. The layered CoNi-CP/GO hybrid components heated in nitrogen gas (N2) at 450 °C yield CoNi-based carbide (CoNi-C) through thermal decomposition of CoNi-CP, while GO is converted into reduced GO (rGO) to finally form a CoNi-C/rGO-450 composite. The CoNi-C/rGO-450 composite shows a reasonable efficiency for oxygen evolution reaction (OER) through water oxidations in alkaline solution. Meanwhile, regulated annealing of CoNi-CP/GO in N2 with thiourea at 450 and 550 °C produces CoNi-based sulfide (CoNi-S) rather than CoNi-C between rGO sheets co-doped by nitrogen (N) and sulfur (S) heteroatoms (NS-rGO) to form CoNi-S/NS-rGO-450 and CoNi-S/NS-rGO-550 composites, respectively. The CoNi-S/NS-rGO-550 shows the best efficiency for electrocatalytic OER among all electrodes with an overpotential of 290 mV at 10 mA cm-2 and a Tafel slope of 79.5 mV dec-1. By applying the iR compensation to remove resistance of the solution (2.1 Ω), the performance is further improved to achieve a current density of 10 mA cm-2 at an overpotential of 274 mV with a Tafel slope of 70.5 mV dec-1. This result is expected to be a promising electrocatalyst compared to the currently used electrocatalysts and a step for fuel cell applications in the future.
    [Abstract] [Full Text] [Related] [New Search]